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NOTE

On the Determination of a Velocity Field
with Prescribed Vorticity?
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1. INTRODUCTION

One of the difficulties which one meets if one tries to solve the unsteady Navier-St
equationsisrelated to the solenoidal character of the velocity field. This constraintintroc
as a related force the pressure which has to be determined, in addition to the velocity
The time derivative of the pressure is not prescribed by the Navier—Stokes equations
pressure is usually determined at each time step via a Poisson equation [1].

An alternative would be to eliminate the pressure by applying the curl-operator to
Navier—Stokes equation and using the resulting Helmholtz vortex equation instead. A
equation still contains the velocity, one meets the additional problem of determing the v
ity components from the vorticity. For two-dimensional problems one may use the str
function and has then to solve a Poisson equation to determine the stream function fro
vorticity. This leads to the often used vorticity-stream-function formulation [1, Chap. 1
It is an important alternative to the solution in primitive variables. For three-dimensic
problems one has, instead, of a stream function a vector potential with three compor
One then has to solve three Poisson equations (i.e. one vector Poisson equation) if one
to determine the vector potential from the vorticity. An alternative, which is also used
in which a relation between the Laplacian of the velocity and the curl of the vorticity
used requires again the solution of a vector Poisson equation. Another alternative, \
has been proposed in [3] is to solve numerically the system of coupled equations, v
relate the velocity to the vorticity, the so-called Cauchy—Riemann equations [4]; see
[5]. A recent review of these methods can be found in [6]. Because of these comp
tions, the use of the primitive variables is in most cases preferred for three-dimens
problems.

1 This is a slightly condensed form of a paper presented aT tirel European Fluid Mechanics Conference,
Gottingen, September 15-18, 1997
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The purpose of this note is to show that the determination of one velocity field wi
prescribed vorticity is an easy task (i.e. linear in the number of unknowns) if a method t
is well known in the theory of differential forms, namely the Flanders integral [7], is used.
is shown that this method which requires the evaluation of line integrals over homotopie
for arectangular grid very efficient if a suitable homotopy is used. The velocity field whit
fulfills the apropriate boundary conditions is then obtained by adding a suitable poten
flow, which requires the solution ohePoisson equation, i.e. the same computational effol
as in primitive variables.

In retrospect, the result of the scheme is obvious. Itis clear, that the velocity field is de
mined by the vortices only up to a gradient of some scalar. One may choose this sc
in such a way that one velocity component vanishes. The determination of the other
locity components from the the definition of the vorticity is then trivial. This leads to
velocity field with one vanishing component which has the prescribed vortices. This sim
interpretation of the homotopy integral is applicable for the homotopy considered here
for similar homotopies in other coordinate systems. In general such an interpretation:
not be possible.

The method is described here for three-dimensional problems. It can be applied
to two-dimensional situations. There, there are no obvious advantages compared tc
vorticity-stream-function formulation. A reader, who is not interested in the mathematic
background and possible generalizations and who wants to avoid the use of differential fc
may omit the paragraphs between (5) and (6) and continue after (5) immediately with

In the applications one usually has to determine a velocity field with known vorticity at
known normal component of the velocity. This problem is called P(i) in [3] and is denot
as (1) in [5]. It has to be solved in each time step for an unsteady computation and in €
iteration for a steady computation. In [5] Wu, Wu, and Wu write, that solving this problem
usually the most time-consuming part of the whole computation. They recommend solv
only two components of the vector Poisson equation and determining the third velo
component from the continuity equation. Then only two Poisson equations, instead of
ordinary three, have to be solved. This leads to a 33% reduction in CPU time. As we h
to solve only one Poisson equation, an additional saving of 50% should be possible.

2. BASIC RELATIONS

Let u(x) be a three-dimensional solenoidal vector field which we call velocity, i.e.

duq duUy dus _

u(x) = (ug, U, u with — =
(X) = (ug, Uz, U3) o 9% T %

1)

and letw be its vorticity field,

dus duy duq duz duy duq

w(x) =curlu, w= (w1, wy, w3) = < ————————— ) @)

Xy  OXz IXz  OXy OX1 0Xo

Then it is easy to determine from u. To solve the inverse problem, i.e. to determine fron
a solenoidal fieldv a solenoidal vector field, is more complicated. Usually one uses the
identity

curl curlb = grad divb — Ab, 3)
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which is valid for an arbitrary vector field, to derive from (2) a vector Poisson equati
Two methods are in use. One can introduce a vector poténtiiich fulfills the equations

u=-curlb, divb=0
and one obtains from (3)
Ab = —w, (4)
or one applies the curl-operator to (2) and one obtains
Au = —curlw. (5)

Equations (4), (5) represent both a system of three uncoupled Poisson equatinrms tor
respectively. The vectors have additionaly to fulfill the side condition of being solenoidal
free space (4) and (5) can be solved with the Poisson integral which leads to the Biot—S
law and for more complicated situations effective numerical schemes for their solution
often available.

Here we want to describe a method used in the theory of differential forms (see [7]) wi
gives directly a solution of (2) without a transformation to a vector Poisson equation. T
solution is, in general, not solenoidal and does not fulfill prescribed boundary conditic
Therefore it is necessary to add to this solution an irrotational flow, which can be obtai
from solvingonePoisson equation. A reader who is not interested in the mathematical be
ground may skip the next sections and continue directly with (6).

One introduces a differential form

w=u;dx; + udx, + uzdxs.
Then one obtains another forn, associated with the vorticity
wy = do = w1 dX dXz + wr dX3dX; + w3 dX; dXo.

One hasdw, =0 and one looks for a formw,, =dw. It is shown in [7] thate can be
obtained by an integral, if there is a homotopy which consists of three funcignsx;)
with X; (0, x;) =0, X; (1, Xj) = Xj, andw,, is, after the replacemert — X; (z, X;j), regular
for all ¢ with 0 <t < 1. Then one may use this replacement to transferto the new
variablesx;, where differentials of are also included, and omit all contributions which d
not containdz. The obtained fornw,, will then be of the form

wy = w1 drdX; + wodrdx + wadr dxg
and it is shown in [7] that the form defined by
1 1 1
o :/ ﬁ)ldtdxl+/ ﬁ)zdrdxz—i—/ w3 dr dxg
0 0 0
is related tav,, by w,, = da. This meansl(w — @) = 0. One has, therefore,
w—a=dy

with some functiony ; the vector field defined by differs fromu only by a gradient.
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The forma depends, in general, on the homotofayr, x;). We consider transformations
Hy, (7)1 (X1 = ¢ (T) X1, X2 = X2, X3 = X3)

and, similarly,Hy, andHy, which are adapted to a rectangular coordinate system. The fur
tion ¢ (r) is a monotonically increasing smooth function which vanisheg farQ and is
equal to 1 forr > 1. We can then introduce a homotopy,

H (1) = Hx, (3t — 2)Hy, (3t — 1) Hy, (37).

This leads to

07
C’z}w = w3z(Xq, (]5(31,' — 1)X2, O)3X2¢/(3‘E -1 dX]_d‘E,
(w1(Xq, X2, § (31 — 2)X3) A% — wa (X1, X2, P (3T — 2)X3) dx1)3X3¢’ (3t — 2) dr,

int<3Z, <t<2 and% <t <1, respectively. One then obtains for

X2 X3 X3
o«=— / wa(xe, &, 0) d& dxg — / wi(xe, X, &) d& dxo + / wa(xe, X, £) dE dx.
0 0 0

Therefore, the velocity field

= </03w2(X1, Xzss)dg_/ozwa(Xl,é&,O)dE,_/o3wl(x1,X2,§)d§,O), (6)

which has a vanishing third component, has the vorti¢ity, w,, ws). This is trivial to
verify for the first two components. For the third component one obtains

~ B /9w, dws
(curll)s = — — + — | (X1, X2, §) d& + wa(X1, X2, 0),
0 0X1 0X2

which agrees withws if w is solenoidal. This is obvious, if one replaces the integrand b
—dws/0Xs. In general, one obtains from (6)

BIVEY dwz Jws

0X1 dX2 dX3

X3
curl i = (wq, wy, wz) — <0, 0, / O (X1, X2, &) dg) with ® =
0

which agrees withw if ® vanishes, as it should. For a nonsolenoida{6) solves the
equation

curli=w+6es or (curlii—w)xe3=0

with some arbitrary functiof and wheres; is the unit vector irks-direction and the second
relation denotes a vector product. One may state that the equation which is solwved if
not solenoidal is the projection of (2) into thxg-x, plane. Of course, the directia is
completely arbitrary. In situations, where the velocity component in one direction is sm
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compared to the velocity component in another direction, it is certainly useful to cho
this direction as the direction &§.

To extend the method to other coordinate systems, one might mention that (2) is v
not only in rectangular coordinates. It is shown in tensor calculus books, that (2) is v
in all coordinate systems, if natural basis vectors are used (compare e.g., [8, Eq. (1.4
The more complicated expressions, which one usually sees, originate from the use of
vectors of unit length. It is not difficult to rewrite, e.g., the expressions for the velocity &
vorticity components in polar coordinatése, r as

au,  drsinvug druy  Aur Ar sinduy aruﬁ)

(r sindwy, rwy, rZsindw,) = ( — — ——, _ g
3¢ ar o o0 op ¢

These equations are obviously of the form of (2) if one writgs=r sindw; etc. and (6)
can be used also in polar coordinates to determine the vorticity from the velocity.

Having obtained one solution of (2), it is easy to obtain the solutianf (2). It differs
from @ only by an irrotational velocity field; i.e.,

u=1{0+grady @)

with a certain smooth functiog. The functiony can be determined if the divergenceuof
is known,

divu = p, (8)
in a bounded domain D and if apropriate boundary conditions are prescribed, e.g.
u-n=urp 9)
on the boundary of D. Theny can be determined from a Poisson equation
Axy=p—divl, n-Vy=ur—-10-n. (10)

Integrating (8) over the domain D leads with Gauss’ theorem to

/ divud3x = ]{ ur d?x = / pd3x. (12)
D r D

This relation between the functiopsandur has to be fulfilled for a solution of (10) to
exist. Conversely the functiop is not uniquely determined. An arbitrary constant can b
added to any solutiop.

3. NUMERICAL APPLICATION

As a check for the numerical feasibility of the results we take the first test problem of
and determine the velocity of Howarth’s stagnation point flow [9],

up=xf'(n), uz=—RY2(f(n) + Bg(m)), uz = Xg (), (12)

in the box 0< x3, x3<1 and 0< n <5 from its vorticity and its normal components. R



234 MOHRING AND MOHRING

TABLE |
Results of the Test Problem Obtained Here and in Ref. [3]

Number of IEWI Number of IEWI 3]
cells lull cells [3] lull
8 1.4 x 1073 10° 7.2x10°°
16° 41 x 10 20° 1.7 x 108
32 1.0x 10 30° 7.3x 10
643 2.6 x10°

denotes the Reynolds number=R00, andy =RY2x,. The parametep is, as in [3],
B= % We discretize the equations on the rectangular staggered grid from [5] and repl
all derivatives by central differences. The error will then®¢?) if h is the grid size. The
integrals in (6) are converted to sums and the Poisson equation (10) is converted to a sy
of linear equations, which we have solved by FFT methods. For simplicity we takie for
andg

f) =n+ald—e ", gn =n+bld—-e"P) witha=065b=075 (13)

which differ in the computational domain by less than 5% from the etaabdg. The
error is then the difference between the numerical value and the value obtained from (
In Table I we list the values of thie, norms of the relative errofE(u)||/||u]l, i.e. the root
mean square of the values in the cells, for various numbers of cells and have showr
comparison the results of [3] which were obtained by a much more complicated comf
O(h?)-scheme. The data show, that the error decays approximately by a factor of 4 if
grid size is halved. This is true for both schemes and the accuracy is comparable.
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