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NOTE

On the Determination of a Velocity Field
with Prescribed Vorticity1
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1. INTRODUCTION

One of the difficulties which one meets if one tries to solve the unsteady Navier–Stokes
equations is related to the solenoidal character of the velocity field. This constraint introduces
as a related force the pressure which has to be determined, in addition to the velocity field.
The time derivative of the pressure is not prescribed by the Navier–Stokes equations. The
pressure is usually determined at each time step via a Poisson equation [1].

An alternative would be to eliminate the pressure by applying the curl-operator to the
Navier–Stokes equation and using the resulting Helmholtz vortex equation instead. As this
equation still contains the velocity, one meets the additional problem of determing the veloc-
ity components from the vorticity. For two-dimensional problems one may use the stream
function and has then to solve a Poisson equation to determine the stream function from the
vorticity. This leads to the often used vorticity-stream-function formulation [1, Chap. 17].
It is an important alternative to the solution in primitive variables. For three-dimensional
problems one has, instead, of a stream function a vector potential with three components.
One then has to solve three Poisson equations (i.e. one vector Poisson equation) if one wants
to determine the vector potential from the vorticity. An alternative, which is also used [2],
in which a relation between the Laplacian of the velocity and the curl of the vorticity is
used requires again the solution of a vector Poisson equation. Another alternative, which
has been proposed in [3] is to solve numerically the system of coupled equations, which
relate the velocity to the vorticity, the so-called Cauchy–Riemann equations [4]; see also
[5]. A recent review of these methods can be found in [6]. Because of these complica-
tions, the use of the primitive variables is in most cases preferred for three-dimensional
problems.

1 This is a slightly condensed form of a paper presented at theThird European Fluid Mechanics Conference,
Göttingen, September 15–18, 1997.
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The purpose of this note is to show that the determination of one velocity field with
prescribed vorticity is an easy task (i.e. linear in the number of unknowns) if a method that
is well known in the theory of differential forms, namely the Flanders integral [7], is used. It
is shown that this method which requires the evaluation of line integrals over homotopies is
for a rectangular grid very efficient if a suitable homotopy is used. The velocity field which
fulfills the apropriate boundary conditions is then obtained by adding a suitable potential
flow, which requires the solution ofonePoisson equation, i.e. the same computational effort
as in primitive variables.

In retrospect, the result of the scheme is obvious. It is clear, that the velocity field is deter-
mined by the vortices only up to a gradient of some scalar. One may choose this scalar
in such a way that one velocity component vanishes. The determination of the other ve-
locity components from the the definition of the vorticity is then trivial. This leads to a
velocity field with one vanishing component which has the prescribed vortices. This simple
interpretation of the homotopy integral is applicable for the homotopy considered here and
for similar homotopies in other coordinate systems. In general such an interpretation will
not be possible.

The method is described here for three-dimensional problems. It can be applied also
to two-dimensional situations. There, there are no obvious advantages compared to the
vorticity-stream-function formulation. A reader, who is not interested in the mathematical
background and possible generalizations and who wants to avoid the use of differential forms
may omit the paragraphs between (5) and (6) and continue after (5) immediately with (6).

In the applications one usually has to determine a velocity field with known vorticity and
known normal component of the velocity. This problem is called P(i) in [3] and is denoted
as (1) in [5]. It has to be solved in each time step for an unsteady computation and in each
iteration for a steady computation. In [5] Wu, Wu, and Wu write, that solving this problem is
usually the most time-consuming part of the whole computation. They recommend solving
only two components of the vector Poisson equation and determining the third velocity
component from the continuity equation. Then only two Poisson equations, instead of the
ordinary three, have to be solved. This leads to a 33% reduction in CPU time. As we have
to solve only one Poisson equation, an additional saving of 50% should be possible.

2. BASIC RELATIONS

Let u(x) be a three-dimensional solenoidal vector field which we call velocity, i.e.

u(x) = (u1, u2, u3) with
∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
= 0 (1)

and letw be its vorticity field,

w(x) = curl u, w = (w1, w2, w3) =
(

∂u3

∂x2
− ∂u2

∂x3
,
∂u1

∂x3
− ∂u3

∂x1
,
∂u2

∂x1
− ∂u1

∂x2

)
. (2)

Then it is easy to determinew from u. To solve the inverse problem, i.e. to determine from
a solenoidal fieldw a solenoidal vector fieldu, is more complicated. Usually one uses the
identity

curl curlb = grad divb − 1b, (3)
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which is valid for an arbitrary vector field, to derive from (2) a vector Poisson equation.
Two methods are in use. One can introduce a vector potentialb which fulfills the equations

u = curl b, div b = 0

and one obtains from (3)

1b = −w, (4)

or one applies the curl-operator to (2) and one obtains

1u = −curl w. (5)

Equations (4), (5) represent both a system of three uncoupled Poisson equations forb, oru,
respectively. The vectors have additionaly to fulfill the side condition of being solenoidal. In
free space (4) and (5) can be solved with the Poisson integral which leads to the Biot–Savart
law and for more complicated situations effective numerical schemes for their solution are
often available.

Here we want to describe a method used in the theory of differential forms (see [7]) which
gives directly a solution of (2) without a transformation to a vector Poisson equation. This
solution is, in general, not solenoidal and does not fulfill prescribed boundary conditions.
Therefore it is necessary to add to this solution an irrotational flow, which can be obtained
from solvingonePoisson equation. A reader who is not interested in the mathematical back-
ground may skip the next sections and continue directly with (6).

One introduces a differential form

ω = u1 dx1 + u2 dx2 + u3 dx3.

Then one obtains another formωw associated with the vorticity

ωw = dω = w1 dx2 dx3 + w2 dx3 dx1 + w3 dx1 dx2.

One hasdωw = 0 and one looks for a formωw = dα. It is shown in [7] thatα can be
obtained by an integral, if there is a homotopy which consists of three functionsXi (τ, xj )

with Xi (0, xj ) = 0, Xi (1, xj ) = xj , andωw is, after the replacementxi → Xi (τ, xj ), regular
for all τ with 0≤ τ ≤ 1. Then one may use this replacement to transformωw to the new
variablesxj , where differentials ofτ are also included, and omit all contributions which do
not containdτ . The obtained form ˜ωw will then be of the form

ω̃w = w̃1 dτ dx1 + w̃2 dτ dx2 + w̃3 dτ dx3

and it is shown in [7] that the formα defined by

α =
∫ 1

0
w̃1 dτ dx1 +

∫ 1

0
w̃2 dτ dx2 +

∫ 1

0
w̃3 dτ dx3

is related toωw by ωw = dα. This meansd(ω − α) = 0. One has, therefore,

ω − α = dχ

with some functionχ ; the vector field defined byα differs fromu only by a gradient.
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The formα depends, in general, on the homotopyXi (τ, xj ). We consider transformations

Hx1(τ ) : (x1 → φ(τ) x1, x2 → x2, x3 → x3)

and, similarly,Hx2 andHx3 which are adapted to a rectangular coordinate system. The func-
tion φ(τ) is a monotonically increasing smooth function which vanishes forτ < 0 and is
equal to 1 forτ > 1. We can then introduce a homotopy,

H(τ ) = Hx3(3τ − 2)Hx2(3τ − 1)Hx1(3τ).

This leads to

ω̃w =


0,

w3(x1, φ(3τ − 1)x2, 0)3x2φ
′(3τ − 1) dx1dτ,

(w1(x1, x2, φ(3τ − 2)x3) dx2 − w2(x1, x2, φ(3τ − 2)x3) dx1)3x3φ
′(3τ − 2) dτ,

in τ < 1
3, 1

3 < τ < 2
3, and2

3 < τ < 1, respectively. One then obtains forα:

α = −
∫ x2

0
w3(x1, ξ, 0) dξ dx1 −

∫ x3

0
w1(x1, x2, ξ) dξ dx2 +

∫ x3

0
w2(x1, x2, ξ) dξ dx1.

Therefore, the velocity field

ũ =
(∫ x3

0
w2(x1, x2, ξ) dξ −

∫ x2

0
w3(x1, ξ, 0) dξ, −

∫ x3

0
w1(x1, x2, ξ) dξ, 0

)
, (6)

which has a vanishing third component, has the vorticity(w1, w2, w3). This is trivial to
verify for the first two components. For the third component one obtains

(curl ũ)3 = −
∫ x3

0

(
∂w1

∂x1
+ ∂w2

∂x2

)
(x1, x2, ξ) dξ + w3(x1, x2, 0),

which agrees withw3 if w is solenoidal. This is obvious, if one replaces the integrand by
−∂w3/∂x3. In general, one obtains from (6)

curl ũ = (w1, w2, w3) −
(

0, 0,

∫ x3

0
2(x1, x2, ξ) dξ

)
with 2 = ∂u1

∂x1
+ ∂w2

∂x2
+ ∂w3

∂x3

which agrees withw if 2 vanishes, as it should. For a nonsolenoidalw (6) solves the
equation

curl ũ = w + θe3 or (curl ũ − w) × e3 = 0

with some arbitrary functionθ and wheree3 is the unit vector inx3-direction and the second
relation denotes a vector product. One may state that the equation which is solved ifw is
not solenoidal is the projection of (2) into thex1-x2 plane. Of course, the directione3 is
completely arbitrary. In situations, where the velocity component in one direction is small
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compared to the velocity component in another direction, it is certainly useful to choose
this direction as the direction ofe3.

To extend the method to other coordinate systems, one might mention that (2) is valid,
not only in rectangular coordinates. It is shown in tensor calculus books, that (2) is valid
in all coordinate systems, if natural basis vectors are used (compare e.g., [8, Eq. (1.4.10)).
The more complicated expressions, which one usually sees, originate from the use of basis
vectors of unit length. It is not difficult to rewrite, e.g., the expressions for the velocity and
vorticity components in polar coordinatesϑ, φ, r as

(r sinϑwϑ, r wφ, r 2 sinϑwr ) =
(

∂ur

∂φ
− ∂r sinϑuφ

∂r
,
∂ruϑ

∂r
− ∂ur

∂ϑ
,
∂r sinϑuφ

∂ϑ
− ∂ruϑ

∂φ

)
.

These equations are obviously of the form of (2) if one writesw1 = r sinϑwϑ etc. and (6)
can be used also in polar coordinates to determine the vorticity from the velocity.

Having obtained one solution of (2), it is easy to obtain the solutionu of (2). It differs
from ũ only by an irrotational velocity field; i.e.,

u = ũ + gradχ (7)

with a certain smooth functionχ . The functionχ can be determined if the divergence ofu
is known,

div u = ρ, (8)

in a bounded domain D and if apropriate boundary conditions are prescribed, e.g.

u · n = u0 (9)

on the boundary0 of D. Thenχ can be determined from a Poisson equation

1χ = ρ − div ũ, n · ∇χ = u0 − ũ · n. (10)

Integrating (8) over the domain D leads with Gauss’ theorem to∫
D

div u d3x =
∮

0

u0 d2x =
∫

D
ρ d3x. (11)

This relation between the functionsρ andu0 has to be fulfilled for a solution of (10) to
exist. Conversely the functionχ is not uniquely determined. An arbitrary constant can be
added to any solutionχ .

3. NUMERICAL APPLICATION

As a check for the numerical feasibility of the results we take the first test problem of [3]
and determine the velocity of Howarth’s stagnation point flow [9],

u1 = x1 f ′(η), u2 = −R−1/2( f (η) + βg(η)), u3 = x3g′(η), (12)

in the box 0≤ x1, x3 ≤ 1 and 0≤ η ≤ 5 from its vorticity and its normal components. R
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TABLE I

Results of the Test Problem Obtained Here and in Ref. [3]

Number of Number of‖E(u)‖
‖u‖

‖E(u)‖
‖u‖ [3]

cells cells [3]

83 1.4 × 10−3 103 7.2 × 10−3

163 4.1 × 10−4 203 1.7 × 10−3

323 1.0 × 10−4 303 7.3 × 10−4

643 2.6 × 10−5

denotes the Reynolds number, R= 100, andη = R1/2x2. The parameterβ is, as in [3],
β = 1

2. We discretize the equations on the rectangular staggered grid from [5] and replace
all derivatives by central differences. The error will then beO(h2) if h is the grid size. The
integrals in (6) are converted to sums and the Poisson equation (10) is converted to a system
of linear equations, which we have solved by FFT methods. For simplicity we take forf
andg

f (η) = η + a(1 − e−η/a), g(η) = η + b(1 − e−η/b) with a = 0.65, b = 0.75 (13)

which differ in the computational domain by less than 5% from the exactf andg. The
error is then the difference between the numerical value and the value obtained from (12).
In Table I we list the values of theL2 norms of the relative errors‖E(u)‖/‖u‖, i.e. the root
mean square of the values in the cells, for various numbers of cells and have shown for
comparison the results of [3] which were obtained by a much more complicated compact
O(h2)-scheme. The data show, that the error decays approximately by a factor of 4 if the
grid size is halved. This is true for both schemes and the accuracy is comparable.
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Willi Möhring†
∗Mathematics Institut,
†Max-Planck-Institut fur Str¨omungsforschung,
Universität Göttingen,
Bunsenstrasse 3-5, 37075
Göttingen, Germany
E-mail: wmoehri@gwdg.de


